Class IX, Mathematics
General Instructions:

1. This Question Paper has 5 Sections A, B, C, D and E.
2. Section A has 10 MCQs carrying 1 mark each
3. Section B has 3 questions carrying 02 marks each.
4. Section C has 2 questions carrying 03 marks each.
5. Section D has 2 questions carrying 05 marks each.
6. Section E has 2 case based integrated units of assessment (04 marks each) with sub- parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory.

Section-A

1. $\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to
(A) $\frac{1}{2}(3-2 \sqrt{2})$
(B) $\frac{1}{3+2 \sqrt{2}}$
(C) $3-2 \sqrt{2}$
(D) $3+2 \sqrt{2}$
2. Which of the following is an irrational number?
(A) $\sqrt{16}-4$
(B) $(3-\sqrt{3})(3+\sqrt{3})$
(C) $\sqrt{5}+3$
(D) $-\sqrt{25}$
3. Value of $\frac{1}{\sqrt{18}-\sqrt{32}}$ is equal to
(A) $\begin{array}{ll}\sqrt{2} & \text { (B) }-\sqrt{2}\end{array}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{1}{\sqrt{2}}$
4. $(5+\sqrt{ } 8)+(3-\sqrt{ } 2)-(\sqrt{ } 2-6)$ when simplified is
(A)positive and irrational
(C)positive and rational
(B)negative and irrational
(D)negative and rational
5. If $\frac{x}{y}+\frac{y}{x}=-1,(x, y \neq 0)$, then the value of $x^{3}-y^{3}$ is
(A) 1
(B) -1
(C) 0
(D) $1 / 2$
6. Degree of the polynomial $\left(x^{3}-2\right)\left(x^{2}+11\right)$ is
(A) 0
(B) 2
(C) 5
(D) 2
7. The zeroes of the polynomial $p(x)=(x-6)(x-5)$ are
(A) $-6,-5$
(B) $-6,5$
(C) $6,-5$
(D) 6,5
8. If $(x-3)$ is a factor of $x 3-3 x 2+k x-12$, then value of k is
(A) -3
(B) 3
(C) 0
(D) 4
9. The points $(-5,2)$ and $(2,-5)$ lie in the
(A) same quadrant
(B) II and III quadrants, respectively
(C) II and IV quadrants, respectively
(D) IV and II quadrants, respectively
10. If a linear equation has solutions $(-2,2),(0,0)$ and $(2,-2)$, then it is of the form
(A) $y-x=0$
(B) $x+y=0$
(C) $-2 x+y=0$
(D) $-x+2 y=0$

Section - B

11. Express $1.32+0.35$ as a rational number in simplest form
12. Find the product of $\left[x-\frac{1}{x}\right],\left[x+\frac{1}{x}\right],\left[x^{2}+\frac{1}{x^{2}}\right]$ and $\left[x^{4}+\frac{1}{x^{4}}\right]$
13. In the figure below, ABCD is a rectangle with length 6 cm and breadth 3 cm . O is the mid point of $A B$. Find the co-ordinates of A, B, C and D.

Section - C

14. (i)Simplify $(5 a+3 b)^{3}-(5 a-3 b)^{3}$
(ii) Factorise $x^{2}-5 x+4$
15. (i) For what value of c , the linear equation $2 \mathrm{x}+\mathrm{cy}=8$ has equal values of x and y for its solution
(ii) If $x=2 k-1$ and $y=k$ is a solution of the equation $3 x-5 y-7=0$, find the value of k
16.

$$
\text { Find the value of }\left(\frac{64}{125}\right)^{-\frac{2}{3}}+\frac{1}{\text { Section - D }}\left(\frac{256}{625}\right)^{\frac{1}{4}}+\frac{\sqrt{25}}{\sqrt[3]{64}}
$$

$$
\text { Simplify: } \frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{6 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{8 \sqrt{3}}{\sqrt{6}+\sqrt{2}} .
$$

17. (i)If $a^{2}+b^{2}+c^{2}=30$ and $a+b+c=10$, then find the value of $a b+b c+c a$

Factorise: $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$.

Section - E (Case Based Questions)

18. Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in the figure.

(a) What are the coordinates of A and B respectively?
(b)What are the coordinates of C and D respectively?
(c) (i)What is the distance between B and D ?
(ii)What are the coordinates of the point of intersection of AC and BD ? (2)
19. On his birthday Manoj planned that this time he celebrates his birthday in a small orphanage centre. He bought apples to give to children and adults working there. Manoj gave 2 apples to each child and 3 apples to each adult working there. In all he distributed 60 apples at the centre.
(a) Represent the above situation by a linear equation in two variables taking the number of children as x and the number of adults as y .
(1)
(b) If the number of children is 15 , then find the number of adults.
(c) Find four different solutions of the equation obtained in (i)
